快速上手 – pypi (pip install)-人生就是博尊龙凯时

[  ]

快速上手 – pypi (pip install)

本教程在配置为 a800(80gb) 的本地机器上运行 yi-34b-chat, 并进行推理。

第 0 步:前提条件

  • 确保安装了 python 3.10 以上版本。

  • 如果你想运行 yi 系列模型,参阅「」。

第 1 步:准备环境

如需设置环境,安装所需要的软件包,运行下面的命令。

git clone https://github.com/01-ai/yi.git
cd yi
pip install -r requirements.txt

第 2 步:下载模型

你可以从以下来源下载 yi 模型。

第 3 步:进行推理

你可以使用 yi chat 模型或 base 模型进行推理。

使用 yi chat 模型进行推理
  1. 创建一个名为 的文件,并将以下内容复制到该文件中。quick_start.py

    from transformers import automodelforcausallm, autotokenizer
    model_path = ''
    tokenizer = autotokenizer.from_pretrained(model_path, use_fast=false)
    # since transformers 4.35.0, the gpt-q/awq model can be loaded using automodelforcausallm.
    model = automodelforcausallm.from_pretrained(
        model_path,
        device_map="auto",
        torch_dtype='auto'
    ).eval()
    # prompt content: "hi"
    messages = [
        {"role": "user", "content": "hi"}
    ]
    input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=true, add_generation_prompt=true, return_tensors='pt')
    output_ids = model.generate(input_ids.to('cuda'))
    response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=true)
    # model response: "hello! how can i assist you today?"
    print(response)
  2. 运行 代码。quick_start.py

    python quick_start.py

    你将得到一个类似输出,如下所示。🥳

    hello! how can i assist you today?
使用 yi base 模型进行推理

步骤与「」类似。

你可以使用现有文件 进行推理。

python demo/text_generation.py  --model <your-model-path>
你将得到一个类似输出,如下所示。🥳 ⬇️

[  ]

快速上手 – docker

🚀 教程:在本地 docker 上运行 yi-34b-chat。⬇️

快速上手 – conda-lock

🚀 如需创建一个可以完全重现的 conda 环境锁定文件,你可以使用 工具。⬇️

快速上手 – llama.cpp

🚀 教程:在本地 llama.cpp 上运行 yi-chat-6b-2bits。⬇️

[  ]

快速上手 – 使用 web demo

你可以使用 yi chat 模型(yi-34b-chat)创建 web demo。注意:yi base 模型(yi-34b)不支持该功能。

第三步:启动 web demo 服务,运行以下命令。

python demo/web_demo.py -c <你的模型路径>

命令运行完毕后,你可以在浏览器中输入控制台提供的网址,来使用 web demo 功能。

[  ]

微调

bash finetune/scripts/run_sft_yi_6b.sh

完成后,你可以使用以下命令,比较微调后的模型与 base 模型。

bash finetune/scripts/run_eval.sh
你可以使用 yi 6b 和 34b base 模型的微调代码,根据你的自定义数据进行微调。⬇️

[  ]

量化

gpt-q 量化

python quantization/gptq/quant_autogptq.py \  --model /base_model                      \  --output_dir /quantized_model            \  --trust_remote_code

如需评估生成的模型,你可以使用以下代码。

python quantization/gptq/eval_quantized_model.py \
  --model /quantized_model                       \
  --trust_remote_code
详细的量化过程。⬇️

awq 量化

python quantization/awq/quant_autoawq.py \  --model /base_model                      \  --output_dir /quantized_model            \  --trust_remote_code

如需评估生成的模型,你可以使用以下代码。

python quantization/awq/eval_quantized_model.py \
  --model /quantized_model                       \
  --trust_remote_code
详细的量化过程。⬇️

[  ]

部署

如果你想部署 yi 模型,确保满足以下软件和硬件要求。

软件要求

在使用 yi 量化模型之前,确保安装以下软件。

模型 软件
yi 4-bits 量化模型
yi 8-bits 量化模型

硬件要求

部署 yi 系列模型之前,确保硬件满足以下要求。

chat 模型
模型最低显存推荐gpu示例
yi-6b-聊天室15 千兆字节rtx 3090
rtx 4090
a10
a30
yi-6b-聊天-4位4 千兆字节rtx 3060
rtx 4060
yi-6b-chat-8位8 千兆字节rtx 3070
rtx 4060
yi-34b-聊天室72 千兆字节4 x rtx 4090
a800 (80gb)
yi-34b-聊天-4位20 千兆字节rtx 3090
rtx 4090
a10
a30
a100 (40gb)
yi-34b-聊天-8位38 千兆字节2 个 rtx 3090
2 个 rtx 4090
a800 (40gb)

以下是不同 batch 使用情况下的最低显存要求。

模型 批次=1 批次=4 批次=16 批次=32
yi-6b-聊天室 12 千兆字节 13 千兆字节 15 千兆字节 18千兆字节
yi-6b-聊天-4位 4 千兆字节 5千兆字节 7 千兆字节 10 千兆字节
yi-6b-chat-8位 7 千兆字节 8 千兆字节 10 千兆字节 14千兆字节
yi-34b-聊天室 65 千兆字节 68千兆字节 76千兆字节 > 80 gb
yi-34b-聊天-4位 19 千兆字节 20 千兆字节 30 千兆字节 40 千兆字节
yi-34b-聊天-8位 35 千兆字节 37 千兆字节 46千兆字节 58 千兆字节
base 模型
模型 最低显存 推荐gpu示例
易-6b 15 千兆字节 rtx3090
rtx4090
a10
a30
易-6b-200k 50 千兆字节 a800 (80 gb)
易-34b 72 千兆字节 4 x rtx 4090
a800 (80 gb)
一-34b-200k 200 千兆字节 4 个 a800 (80 gb)

原创文章,作者:校长,如若转载,请注明出处:https://www.yundongfang.com/yun287742.html

(0)
打赏 微信扫一扫不于多少! 微信扫一扫不于多少! 支付宝扫一扫礼轻情意重 支付宝扫一扫礼轻情意重
上一篇 2024年3月6日 下午8:41
下一篇 2024年3月6日

相关推荐

网站地图